• Главная
  • Лента новостей
  • Лента RSS
  • Статьи
  • Календарь событий
  • Образование
  • Финансирование
  • Открытые инновации
  • Шоу-рум
  • О проекте
  • Партнеры
  • Добавить публикацию
  • Сервисы
  • Реклама
  • hello@technovery.com
  • telegram
  • vk
technovery
Нет результатов
Все результаты
technovery
Нет результатов
Все результаты

Ученые ЮФУ разработали умную систему диагностики силовых трансформаторов

Интеллектуальная платформа исключает несчастные случаи в энергетических хозяйствах предприятий из-за аварий и повреждений силовых трансформаторов, своевременно выявляет развития дефекта и прогнозирует безаварийный срок эксплуатации высоковольтного оборудования.

22 апреля, 2022
Наука
Ученые ЮФУ разработали умную систему диагностики силовых трансформаторов

С развитием регионов и городских агломератов создаются градообразующие предприятия отраслей народного хозяйства, развиваются транспортные системы пассажирских и грузовых перевозок, возникает потребность в увеличении мощностей энергетических систем. Энергетическая система России представляет собой разветвлённую структуру, которая насчитывает сотни тысяч силовых трансформаторов. По словам ученых Международного института интеллектуальных материалов ЮФУ, в основном трансформаторы средней мощности, это около 65% от общего числа, уже исчерпали свой ресурс, который был установлен заводом-изготовителем – 25 лет.

«Следует также отметить, что устаревшее силовое электрооборудование было рассчитано на одну нагрузку, а наращивание энергетических мощностей современных предприятий приводит к тому, что устаревшее оборудование работает также на пределе своих возможностей», – отметил ведущий научный сотрудник лаборатории технологий искусственного интеллекта и больших данных для нанодиагностики материалов МИИ ИМ ЮФУ Андрей Чернов.

Работы в области повышения надёжности силовых трансформаторов являются востребованными во всех отраслях народного хозяйств, поскольку безаварийная работа напрямую связана с безопасным обслуживаем и эксплуатацией силовых трансформаторов, а также исключает возможность возникновения несчастных случаев.

«Доля несчастных случаев от выхода из строя электрооборудования составляет 6 % от общего числа на энергетических хозяйствах промышленных предприятий, особенно при авариях силовых трансформаторов, которые сопровождаются большими величинами токов короткого замыкания, взрывом и пожаром», – рассказал Андрей Чернов.

По изменению параметров силовых трансформаторов можно не только определить место повреждения, но и скорость нарастания дефекта, спрогнозировать состояние силового электрооборудования, а самое главное — предотвратить выход из строя дорогостоящего оборудования. По словам ученых, в некоторых случаях, особенно при отсутствии наработок при диагностике, возникает необходимость в разработке средств интеллектуальной поддержки принятия решений. Предложенный гибридный подход deep learning and HDLSS позволил получить адекватное решение по прогнозированию изменения параметров силовых трансформаторов, а также при анализе дополнительных факторов определить остаточный ресурс трансформаторов.

«Разработанная экспертная система принятия решений на основе искусственного интеллекта является современным решением по анализу многофакторных результатов диагностики силовых трансформаторов и параметров текущего контроля состояния. Данная система решает две задачи: во-первых, она позволит спрогнозировать состояние силовых трансформаторов по основным параметрам, выявить развитие дефекта, определить остаточный ресурс для проведения своевременного ремонта и замены силового трансформатора; вторая задача – исключить вероятность аварии из-за повреждения высоковольтного оборудования, которые сопровождаются электрической дугой, воспламенением трансформаторного масла и др», – дополнил Андрей Чернов.

Разработка ученых МИИ ИМ ЮФУ является востребованной и актуальной в энергетических хозяйствах предприятий всех сфер деятельности, а также значимой для разработки отечественных систем поддержки приятия решений. С учётом стоимости силового трансформатора, данная методика даст возможность экономически эффективно подойти к решению по замене или ремонту силовых трансформаторов.

Проект был представлен на международной конференции «RelStat-2021», по итогам которой была опубликована научная работа ученых Южного федерального университета с результатами исследования.

Исследование проводилось в рамках гранта РФФИ (19–00246-а) сотрудниками МИИ ИМ ЮФУ под руководством ведущего научного сотрудника лаборатории технологий искусственного интеллекта и больших данных для нанодиагностики материалов МИИ ИМ ЮФУ Андрея Чернова.

 

Будьте в курсе в удобном формате, присоединяйтесь: TG-канал и ВК

Бесплатная служба распространения новостей для научных организаций и стартапов

hello@technovery.com

 

Source: Южный федеральный университет
Теги: AIБезопасность технологических процессовЭнергетика

Related Posts

Летняя школа AIRI по искусственному интеллекту. Прием заявок для участия открыт до 1 июня
Обучение

Летняя школа AIRI по искусственному интеллекту. Прием заявок для участия открыт до 1 июня

16 мая, 2022
Новая система искусственного интеллекта может существенно улучшить транспортный поток
Цифра

Новая система искусственного интеллекта может существенно улучшить транспортный поток

13 мая, 2022
Искусственный интеллект становится ближе к естественному
Наука

Искусственный интеллект становится ближе к естественному

12 мая, 2022
Загрузить больше

Технологии

Робототехника
Беспилотники
Машинное обучение
AI
Транспорт
Материалы
ВИЭ
Интернет вещей
Микроэлектроника
Оптика
Носимые устройства

Смотреть все »

Запросы

Актуальные запросы Правительства Москвы на поиск инновационных решений. Предложить решение можно до 31 мая

Курс на импортзамещение. Удмуртский государственный университет

Университет Иннополис предложит компаниям план перехода на российское ПО

Алмазодобывающая компания АЛРОСА проводит открытый конкурс проектов и технических решений в поисках вариантов рентабельной отработки запасов трубки Юбилейная подземным способом

Открытый запрос РЖД: Получение альтернативной энергии посредством обустройства микрогидроэлектростанций в системе водоснабжения. Подача предложений до 7 июля

Открытый запрос на поиск технологических решений. Северсталь

Всероссийский урбанистический хакатон «Города». Срок подачи заявок на участие в проекте — до 13 мая
Хакатон

Всероссийский урбанистический хакатон «Города». Срок подачи заявок на участие в проекте — до 13 мая

19 апреля, 2022

© 2022 technovery

  • hello@technovery.com
  • Условия использования
  • Политика конфиденциальности
Нет результатов
Все результаты
  • Главная
  • Лента новостей
  • Лента RSS
  • Статьи
  • Календарь событий
  • Образование
  • Финансирование
  • Открытые инновации
  • Шоу-рум
  • Карта технологий
  • О проекте
  • Партнеры
  • Добавить публикацию
  • Сервисы
  • Реклама
  • hello@technovery.com

© 2022 technovery