• Главная
  • Лента новостей
  • Лента RSS
  • Статьи
  • Календарь событий
  • Образование
  • Финансирование
  • Открытые инновации
  • Шоу-рум
  • О проекте
  • Партнеры
  • Добавить публикацию
  • Сервисы
  • Реклама
  • hello@technovery.com
  • telegram
  • vk
technovery
Нет результатов
Все результаты
technovery
Нет результатов
Все результаты

Искусственный интеллект становится ближе к естественному

12 мая, 2022
Наука
Искусственный интеллект становится ближе к естественному

Российские ученые из Института искусственного интеллекта AIRI и МФТИ создали биологически правдоподобную модель памяти для систем искусственного интеллекта с внутренней мотивацией. Научная статья опубликована в авторитетном журнале Brain Informatics (Q1).

Когнитивный агент, если выражаться простым языком, — это программа, которая учится самостоятельно взаимодействовать с миром и обучаться на своих ошибках, выполняя конкретную задачу. Основой агента служит архитектура из алгоритмов, в том числе и нейросетевых, которая помогает ему выполнять инструкции разработчика.

В повседневной жизни мы регулярно сталкиваемся с результатами работы методов машинного обучения и искусственного интеллекта. За последнее десятилетие успех в этом направлении был связан с обучением глубоких нейронных сетей (Artificial Neural Networks, ANN), построенных на основе модели искусственного нейрона. Исследователи также выделяют спайковые нейронные сети (Spiking Neural Networks, SNN), построенные на основе модели спайкового нейрона, которая является более близкой к биологическому нейрону. Искусственные нейронные сети обмениваются вещественными числами, а эти — спайками, единичными событиями, происходящими в определенное время, максимально повторяя работу нервной системы.

Искусственные нейронные сети более распространены за счет простоты используемой модели нейрона, а архитектура графических ускорителей очень удобна для связанных с ними вычислений. Они используют для передачи информации все содержащиеся в них нейроны, в то время как спайковые нейросети подражают работе мозга животного или человека — задействуют только активные в конкретный момент времени нейроны, что обеспечивает значительную экономию ресурсов при их обучении и использовании. Кроме того, именно спайковые нейросети, биологически правдоподобные и гибридные модели и методы обучения ИИ считаются более перспективными с точки зрения прогресса в понимании принципов работы человеческого мозга за счет возможностей их использования в когнитивных науках. В основе таких разработок лежит использование модели пирамидального нейрона, который составляет основную долю нейронов коры головного мозга человека и обучается быстрее, чем искусственный нейрон.

Исследователи группы «Нейросимвольная интеграция» Института искусственного интеллекта AIRI и студенты МФТИ создали первую в России биологически правдоподобную вычислительную модель памяти агента, который способен эффективно оперировать в незнакомой среде под воздействием внешнего сигнала подкрепления. Например, навигироваться и искать ресурсы в лабиринтах и помещениях.

Разработанная модель агента может оперировать абстракциями состояний и действий. Это значит, что он способен совершать сложные действия на базе уже известных ему простых операций. Например, научившись искать дверь в помещении, агент сможет использовать этот навык для решения более сложных задач, в то время как большинство существующих сейчас программ требует создания новой инструкции для каждой конкретной задачи. Помимо внешней мотивации (награды за успешно совершенное действие), у разработанного научной группой агента присутствует и внутренняя. Это делает его поведение более сложным и автономным. Внутренняя мотивация обеспечивает осмысленное поведение в отсутствие внешнего подкрепляющего сигнала. Это означает, что такой агент сможет не только искать решение задачи, как большинство стандартных программ, но и изучать мир вокруг себя.

Статья выполнена в рамках долгосрочного фундаментального исследования на стыке компьютерных и когнитивных наук, которое приближает ученых к созданию более самостоятельных систем искусственного интеллекта и лучшему пониманию принципов работы мозга человека и животного. Построение таких больших гибридных биологически правдоподобных моделей и последующее их тестирование в сложных средах-симуляторах — это принципиально новое и малоисследованное направление. Подобные проекты помогают исследователям-когнитивистам в проверке теорий и гипотез, а созданная модель может стать одним из примеров того, как целый комплекс моделей из нейронаук может быть соединен вместе, чтобы сделать работу систем ИИ более похожей на работу человеческого мозга. Кроме того, биологическое правдоподобие структуры такого агента потребует меньше вычислительных мощностей и сделает ИИ более экономным.

Александр Панов, руководитель группы «нейросимвольная интеграция» Института искусственного интеллекта AIRI, заведующий лабораторией когнитивных динамических систем Центра когнитивного моделирования МФТИ, рассказывает:  «Разработанная нашей группой архитектура действительно является уникальным комплексом интересных идей из области нейронаук и когнитивных исследований. Это оригинальные реализации иерархического представления информации, внутренней мотивации и предсказания последствий событий. Основное наше достижение — научить такую комплексную систему стабильно и согласованно действовать в среде. Наша модель дает исследователям со всего мира возможность создавать еще более сложные системы, которые еще лучше имитируют работу мозга и психики человека».

Код когнитивного агента выложен в открытый доступ, любой желающий исследователь может им воспользоваться.

Научная статья

 

Научно-исследовательский Институт искусственного интеллекта AIRI — автономная некоммерческая организация, занимающаяся фундаментальными и прикладными исследованиями в области искусственного интеллекта. На сегодня более 90 научных сотрудников AIRI задействовано в исследовательских проектах института для работы совместно с глобальным сообществом разработчиков, академическими и индустриальными партнерами.

Центр когнитивного моделирования Московского физико-технического института (МФТИ) занимается разработкой нового класса интеллектуальных систем, когнитивных динамических систем, в рамках которых было бы возможно решать до сих пор нерешенные проблемы и задачи искусственного интеллекта.

 

Бесплатная служба распространения новостей для научных организаций и стартапов

hello@technovery.com

 

Source: Московский физико-технический институт
Теги: AIОбработка данныхХранение данных

Related Posts

Летняя школа AIRI по искусственному интеллекту. Прием заявок для участия открыт до 1 июня
Обучение

Летняя школа AIRI по искусственному интеллекту. Прием заявок для участия открыт до 1 июня

16 мая, 2022
Новая система искусственного интеллекта может существенно улучшить транспортный поток
Цифра

Новая система искусственного интеллекта может существенно улучшить транспортный поток

13 мая, 2022
Ученые ЮФУ разработали умную систему диагностики силовых трансформаторов
Наука

Ученые ЮФУ разработали умную систему диагностики силовых трансформаторов

22 апреля, 2022
Загрузить больше

Технологии

Робототехника
Беспилотники
Машинное обучение
AI
Транспорт
Материалы
ВИЭ
Интернет вещей
Микроэлектроника
Оптика
Носимые устройства

Смотреть все »

Запросы

Актуальные запросы Правительства Москвы на поиск инновационных решений. Предложить решение можно до 31 мая

Курс на импортзамещение. Удмуртский государственный университет

Университет Иннополис предложит компаниям план перехода на российское ПО

Алмазодобывающая компания АЛРОСА проводит открытый конкурс проектов и технических решений в поисках вариантов рентабельной отработки запасов трубки Юбилейная подземным способом

Открытый запрос РЖД: Получение альтернативной энергии посредством обустройства микрогидроэлектростанций в системе водоснабжения. Подача предложений до 7 июля

Открытый запрос на поиск технологических решений. Северсталь

Всероссийский урбанистический хакатон «Города». Срок подачи заявок на участие в проекте — до 13 мая
Хакатон

Всероссийский урбанистический хакатон «Города». Срок подачи заявок на участие в проекте — до 13 мая

19 апреля, 2022

© 2022 technovery

  • hello@technovery.com
  • Условия использования
  • Политика конфиденциальности
Нет результатов
Все результаты
  • Главная
  • Лента новостей
  • Лента RSS
  • Статьи
  • Календарь событий
  • Образование
  • Финансирование
  • Открытые инновации
  • Шоу-рум
  • Карта технологий
  • О проекте
  • Партнеры
  • Добавить публикацию
  • Сервисы
  • Реклама
  • hello@technovery.com

© 2022 technovery